Exercise 7.4.5

Show that the substitution

$$
x \rightarrow \frac{1-x}{2}, \quad a=-l, \quad b=l+1, \quad c=1
$$

converts the hypergeometric equation into Legendre's equation.
[TYPO: The hypergeometric equation listed in the text in Table 7.1 on page 345 is incorrect and will not lead to Legendre's equation.]

Solution

The hypergeometric equation is a second-order linear homogeneous ODE and has a minus sign in front of c.

$$
x(x-1) y^{\prime \prime}+[(1+a+b) x-c] y^{\prime}+a b y=0
$$

In order to change this into the Legendre equation, make the substitution,

$$
x=\frac{1-z}{2} .
$$

It becomes

$$
\frac{1-z}{2}\left(\frac{1-z}{2}-1\right) y^{\prime \prime}+\left[(1+a+b) \frac{1-z}{2}-c\right] y^{\prime}+a b y=0 .
$$

Use the chain rule to find what the derivatives of y are in terms of this new variable ($z=1-2 x$).

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d z} \frac{d z}{d x}=\frac{d y}{d z}(-2)=-2 \frac{d y}{d z} \\
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d z}{d x} \frac{d}{d z}\left(-2 \frac{d y}{d z}\right)=-2\left(-2 \frac{d^{2} y}{d z^{2}}\right)=4 \frac{d^{2} y}{d z^{2}}
\end{aligned}
$$

As a result, the ODE in terms of z is

$$
\frac{1-z}{2}\left(\frac{1-z}{2}-1\right)\left(4 \frac{d^{2} y}{d z^{2}}\right)+\left[(1+a+b) \frac{1-z}{2}-c\right]\left(-2 \frac{d y}{d z}\right)+a b y=0
$$

or after simplifying,

$$
-\left(1-z^{2}\right) \frac{d^{2} y}{d z^{2}}+\left[(1+a+b) \frac{1-z}{2}-c\right]\left(-2 \frac{d y}{d z}\right)+a b y=0 .
$$

Now set $a=-l, b=l+1$, and $c=1$.

$$
\begin{gathered}
-\left(1-z^{2}\right) \frac{d^{2} y}{d z^{2}}+\left[(2) \frac{1-z}{2}-1\right]\left(-2 \frac{d y}{d z}\right)-l(l+1) y=0 \\
-\left(1-z^{2}\right) \frac{d^{2} y}{d z^{2}}+(-z)\left(-2 \frac{d y}{d z}\right)-l(l+1) y=0 \\
-\left(1-z^{2}\right) \frac{d^{2} y}{d z^{2}}+2 z \frac{d y}{d z}-l(l+1) y=0
\end{gathered}
$$

Therefore, multiplying both sides by -1 , the Legendre equation is obtained.

$$
\left(1-z^{2}\right) \frac{d^{2} y}{d z^{2}}-2 z \frac{d y}{d z}+l(l+1) y=0
$$

